Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256264

RESUMO

Recent works identified ClpXP, mitochondrial caseinolytic protease, as the only target of imipridones, a new class of antitumor agents. Our study of the mechanism of imipridone derivative TR-57 action in SUM159 human breast cancer cells demonstrated mitochondrial fragmentation, degradation of mitochondrial mtDNA and mitochondrial dysfunction due to inhibition of Complex I and Complex II activity. Complete inhibition of oxidative phosphorylation accompanied 90, 94, 88 and 87% decreases in the content of Complex I, II, III and IV proteins, respectively. The content of the FOF1-ATPase subunits decreased sharply by approximately 35% after 24 h and remained unchanged up to 72 h of incubation with TR-57. At the same time, a disappearance of the ATPIF1, the natural inhibitor of mitochondrial FOF1-ATPase, was observed after 24 h exposure to TR-57. ATPase inhibitor oligomycin did not affect the mitochondrial membrane potential in intact SUM159, whereas it caused a 65% decrease in TR-57-treated cells. SUM159 cells incubated with TR57 up to 72 h retained the level of proteins facilitating the ATP transfer across the mitochondrial membranes: VDAC1 expression was not affected, while expression of ANT-1/2 and APC2 increased by 20% and 40%, respectively. Thus, our results suggest that although TR-57 treatment leads to complete inhibition of respiratory chain activity of SUM159 cells, hydrolysis of cytoplasmic ATP by reversal activity of FOF1-ATPase supports mitochondrial polarization.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Humanos , Potencial da Membrana Mitocondrial , Adenosina Trifosfatases , Translocador 2 do Nucleotídeo Adenina , Complexo I de Transporte de Elétrons , Trifosfato de Adenosina
2.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555190

RESUMO

ONC201, the anticancer drug, targets and activates mitochondrial ATP-dependent caseinolytic peptidase P (ClpP), a serine protease located in the mitochondrial matrix. Given the promise of ONC201 in cancer treatment, we evaluated its effects on the breast ductal carcinoma cell line (BT474). We showed that the transient single-dose treatment of BT474 cells by 10 µM ONC201 for a period of less than 48 h induced a reversible growth arrest and a transient activation of an integrated stress response indicated by an increased expression of CHOP, ATF4, and GDF-15, and a reduced number of mtDNA nucleoids. A prolonged exposure to the drug (>48 h), however, initiated an irreversible loss of mtDNA, persistent activation of integrated stress response proteins, as well as cell cycle arrest, inhibition of proliferation, and suppression of the intrinsic apoptosis pathway. Since Natural Killer (NK) cells are quickly gaining momentum in cellular anti-cancer therapies, we evaluated the effect of ONC201 on the activity of the peripheral blood derived NK cells. We showed that following the ONC 201 exposure BT474 cells demonstrated enhanced sensitivity toward human NK cells that mediated killing. Together our data revealed that the effects of a single dose of ONC201 are dependent on the duration of exposure, specifically, while short-term exposure led to reversible changes; long-term exposure resulted in irreversible transformation of cells associated with the senescent phenotype. Our data further demonstrated that when used in combination with NK cells, ONC201 created a synergistic anti-cancer effect, thus suggesting its possible benefit in NK-cell based cellular immunotherapies for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Mitocôndrias , DNA Mitocondrial
3.
Biochim Biophys Acta Gen Subj ; 1866(9): 130184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660414

RESUMO

BACKGROUND: Dithiocarbamates and derivatives (including disulfiram, DSF) are currently investigated as antineoplastic agents. We have revealed earlier the ability of hydroxocobalamin (vitamin В12b) combined with diethyldithiocarbamate (DDC) to catalyze the formation of highly cytotoxic oxidized derivatives of DSF (DSFoxy, sulfones and sulfoxides). METHODS: Electron and fluorescent confocal microscopy, molecular biology and conventional biochemical techniques were used to study the morphological and functional responses of MCF-7 human breast cancer cells to treatment with DDC and B12b alone or in combination. RESULTS: DDC induces unfolded protein response in MCF-7 cells. The combined use of DDC and B12b causes MCF-7 cell death. Electron microscopy revealed the separation of ER and nuclear membranes, leading to the formation of both cytoplasmic and perinuclear vacuoles, with many fibers inside. The process of vacuolization coincided with the appearance of ER stress markers, a marked damage to mitochondria, a significant inhibition of 20S proteasome, and actin depolimerization at later stages. Specific inhibitors of apoptosis, necroptosis, autophagy, and ferroptosis did not prevent cell death. A short- time (6-h) exposure to DSFoxy caused a significant increase in the number of entotic cells. CONCLUSIONS: These observations indicate that MCF-7 cells treated with a mixture of DDC and B12b die by the mechanism of paraptosis. A short- time exposure to DSFoxy caused, along with paraptosis, a significant activation of the entosis and its final stage, lysosomal cell death. GENERAL SIGNIFICANCE: The results obtained open up opportunities for the development of new approaches to induce non-apoptotic death of cancer cells by dithiocarbamates.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Dissulfiram/farmacologia , Ditiocarb/química , Ditiocarb/farmacologia , Duração da Terapia , Entose , Feminino , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...